125. Cross Conjugated Polyenes Derived from 2-Vinyl-butadiene: Electronic States of their Radical Cations, and Triplet Energy¹)

by Thomas Bally²), Louis Neuhaus, Stephan Nitsche and Edwin Haselbach

Institut für Physikalische Chemie der Universität, Pérolles, CH-1700 Fribourg

and Johann Janssen and Wolfgang Lüttke

Organisch-chemisches Institut der Universität, Tammannstrasse 2, D - 3400 Göttingen Dedicated to Professor Jack D. Dunitz on the occasion of his 60th birthday

(24.II.83)

Summary

The doublet states of the radical cations of the cross conjugated polyenes 4,4-dimethyl-1-methylidene-2,5-cyclohexadiene 2 and its bis-derivative 1 have been investigated by photoelectron spectroscopy and by electronic spectroscopy of 1^+ , prepared at 77 K in an electron scavenging matrix by γ -irradiation. Simultaneous consideration of the spectral results shows 1^+ to be the second hydrocarbon molecular cation (after 2,2-dimethyl isoindene) which possesses a first excited doublet state (D₁) of non-*Koopmans* nature (²B_{3g}). The first *Koopmans*-type excited state (²B_{2g}) expected from PE. spectroscopy lies, however, very close in energy. In addition T₁ of 1 was observed by electron energy loss spectroscopy at 2.0±0.1 eV. Application of the 'SDT-equation' predicts for this state only 1.05 eV; there is at present no reasonable explanation for this failure.

Introduction. – We have been interested for some years in the electronic structure [1-3] and the thermochemical properties [4] of cross-conjugated olefins and their radical cations. The latter often revealed unusual and interesting features such as spontaneous double-bond distortion [2] or low-lying non-Koopmans states [3]. Recently 1, a new member of this family of compounds, was synthesized [5] and subjected to extensive structural [6], spectroscopic [7], and theoretical [8] investigations. This paper communicates an extension of these studies to the corresponding radical cations. Furthermore the vertical triplet energy of 1 (which shows no phosphorescence) was determined using a recently developed electron spectrometer [9].

¹) Part XI of Studies of Molecular Ions. Part X: [20].

²) Author to whom correspondance should be addressed.

Thus we initiated an investigation of 1 using the various techniques described in the *Experimental Part*. We also include the PE. spectrum of the related hydrocarbon 2 [5].

Experimental. - PE. spectra were obtained on a modified *PE 16* instrument incorporating a preretardation device allowing spectra to be obtained at 20-25 meV resolution [10] (see fwhm of first peak of 2). Several hundred scans were accumulated on a *Canberra* multi-channel analyzer interfaced to a *PDP 11/34* computer for data workup. Internal calibration was done with Ar/Xe and CH₃I.

Electronic absorption (EA.) spectra of the radical ions were obtained using techniques pioneered mainly by Shida & Iwata [11]. Glassy, frozen solutions of the polyenes (10^{-3} M) in a Freon mixture [12] contained in 10 mm copper cuvettes with Suprasil windows were exposed to 1.3 MeV γ -radiation from a ⁶⁰Co-source (0.3 Mrad/h) for 1 h. Subsequent transfer into a quartz Dewar inside a PE 330 UV./ VIS./NIR. spectrometer was effected under N₂ to avoid fogging of the cuvette windows. Optical spectra were recorded on an Apple II+ computer interfaced to the PE 330 and to the PDP-computer where spectral data were worked up similarly to the PE. data.

Electron energy loss (EEL.) spectra were obtained on the facility described in [9] where 1 was introduced through a heated inlet system at 120°. For the PPP calculations we employed a program based on the parametric expressions proposed by Zahradnik et al. [13]. For triplet states, the special parameters described in [14] were used while calculations on radical ions were done with the open shell procedure based on the Longuet-Higgins/Pople-formalism [15] with parameters according to Zahradnik & Čársky [16]. Bond lengths and bond angles were fixed at 140 pm and 120°, respectively, but in all cases the variable β procedure [13] was used which in our experience gives better agreement with experimental transition energies.

Results and discussion. – *PE. spectra. Figure 1* presents the PE. spectra of 1 and 2 in the range amenable to interpretation. *Table 1* lists the exact peak positions (including vibrational progressions where resolved) along with a HMO π -orbital scheme and the calculated ionization energies from the parametric relationship [17]:

$$I_{vi}(eV) = 6.553 + 2.734 x_i (\beta - units)$$
(1)

Assignment of the first four bands of 1 and the first two of 2 is straightforward on the basis of simple *Hückel* theory. Also, the observed $I_{v,i}$ correlate well with those obtained from the simple parametric relationship I^3).

Interestingly, any attempt to improve the quantitative correlation by using the more sophisticated HMO-based parametric treatments accounting for first-order bond fixation in polyenes [17] failed. For example the excited states ${}^{2}A_{u}$ and ${}^{2}B_{2g}$ of 1⁺ lie very close to the corresponding pair of states in related biphenyl (which has the same second and third HMO π -orbitals as 1 lying at -9.05 eV [19]). However, first-order bond fixation has very little influence in the case of biphenyl (predicted I_{v,2}=9.22 eV) but shifts the degenerate pair of states in 1 to 10.00 eV. The inductive effect of the CMe₂-bridges in 1 can at most account for half of this unusually large discrepancy because the ${}^{2}B_{1u}$ ground state of 1⁺ is (unlike ${}^{2}A_{u}/{}^{2}B_{2g}$) affected both inductively and hyperconjugatively by this perturbation, and is predicted at 7.50 eV, *i.e.* only 0.45 eV too high. We can offer no explanation for this breakdown of the first-order bond-fixation model.

Regarding the HMO degenerate pair of states ${}^{2}A_{u}$ and ${}^{2}B_{2g}$ in 1 we note a ≈ 0.2 eV split in the corresponding PE. bands. This may be due to the transannular

³) A statistical analysis of $I_{v,i}(exp.)$ vs. $I_{v,i}(calc.)$ of 1 and 2 yields a correlation coefficient of 0.990 with a straight line intersecting the ordinate at -0.18 eV. While this does not imply that simple HMO is an excellent model [18] it serves as a nice example of how a simple model may be better than a more sophisticated one (see following paragraph).

Fig. 1. PE. spectra of 1 and 2 (Circled figures correspond to peak numbers in Table 2)

interactions which are antibonding in the former and bonding in the latter state (see orbital pictures in *Table 1*).

EA. spectrum of 1^+ . In contrast to 2^4), a frozen solution of 1 in the *Freon* mixture exposed to ≈ 0.3 Mrad of γ -radiation gives a well-resolved spectrum of 1^+ as shown in *Figure 2*.

At first sight, this spectrum stand in excellent accord with what one expects from the PE. spectrum of 1: $\lambda_{max} = 618$ nm for 1⁺ matches with $I_{v,2} - I_{v,1} = 2.02$ eV for 1. The same is true for the second optical transition at 398 nm $\cong 3.12$ eV, given $I_{v,4} - I_{v,1} = 3.18$ eV. Nevertheless, we propose a different assignment of the first electronic transition of 1⁺ on the basis of the following arguments.

⁴⁾ Compound 2 gives only very broad and featureless absorption upon *y*-irradiation in frozen Freen mixture, indicating the absence of discrete 2⁺ which should show a clear ²B₁ ← ²A₂ transition at 1.4 eV ≈ 885 nm. Presumably some interaction with the solvent leads to a new species displaying no spectroscopically traceable relation to 2⁺.

Comp.	Peak i	$I_{v,i}(exp.)^a)$ (eV)	I _{v,i} (HMO) ^b) (eV)	ε _i (HMO) (β)	ψ _i (HMO)	Symmetry ^c)
1	0	7.05 (7.23) (7.40)	7.38	- 0.311		B _{1u}
	0	9.07	9.29	- 1.0	●●_00 00 ●●	A _u
	3	9.24	9.29	- 1.0		B _{2g}
	4	10.23	10.42	- 1.481		B _{3g}
2	1	8.07 (8.27) (8.4)	7.97	- 0.518	~ €	Bı
	Ø	9.47 (9.64)	9.29	- 1.0	-00	A ₂
	3	11.4	11.81	- 1.923	୶	Bı

Table 1. Measured and calculated ionization energies of 1 and 2

^a) Figures in brackets denote vibrational progressions. ^b) Calculated using the parametric relationship 1. ^c) Point group: D_{2h} for 1, C_{2v} for 2. The corresponding symmetry species in D_2 (C_{2h}) point group for 1 are obtained by dropping the subscript letters (numbers). The axes are chosen as indicated in *Figure 1*.

Fig. 2. EA. spectrum of 1^+ (At $\lambda < 350$ nm the parent neutral starts strongly absorbing)

Group theory requires that the (first) ${}^{2}A_{u}(\pi_{2}) \leftarrow {}^{2}B_{1u}(\pi_{1})^{5}$) Koopmans transition be electric dipole forbidden in the D_{2h} -point group⁶). Only the second Koopmans transition ${}^{2}B_{2g}(\pi_{3}) \leftarrow {}^{2}B_{1u}(\pi_{1})$, expected at 2.19 eV (\cong 566 nm) from the PE. spectrum, is dipole allowed but polarized along the short axis (x) of 1⁺. However, if the observed 618-nm band were assigned to this latter transition a solvent shift of 0.27 eV would result, which is too large for this ion with its a well-delocalized charge (cf. [21] [22]).

Recourse to theory resolves the problem. A simple HMO configuration diagram taking into account virtual orbitals (*Fig. 3*) reveals that the lowest excited configuration corresponds to the Homo \rightarrow Lumo non-Koopmans transition ${}^{2}B_{3g}(\pi_{-1}^{*}) \leftarrow {}^{2}B_{1u}(\pi_{-1})$

Fig. 3. Theoretical and experimental configuration (state) diagramm of 1⁺ (Solid bars denote Koopmans configurations (states), open bars non-Koopmans configurations (states). Circled figures are relative calculated oscillator strengths for electronic transitions. Figures in brackets indicate percentage of leading configuration in the CI-expansion)

which is dipole-allowed and y-polarized. Still on the HMO level, we calculate [23] that its oscillator strength is three times that for ${}^{2}B_{2}g(\pi_{3}) \leftarrow {}^{2}B_{1u}(\pi_{1})$. Hence, the corresponding EA. band should clearly dominate the spectral region in question. PPP-CI-calculations (*Fig. 3*) confirm these expectations although quantitative agreement with experimental results (dashed lines) is not very satisfactory.

With respect to the *Koopmans* transition ${}^{2}B_{2g}(\pi_{3}) \leftarrow {}^{2}B_{1u}(\pi_{1})$ which therefore is not responsible for the peak at 618 nm (*Fig. 2*), we conclude that it is buried in

⁵) We make use of the notation introduced in [20] where the expression in the brackets indicates the singly occupied MO. The numbering scheme for the π -orbitals is defined in *Table 1*.

⁶) These selection rules persist also upon descent to C_{2h} -symmetry, shown by 1 in the gas-phase [6a] and the crystal [6b] (and therefore presumably also in solution). Only if torsion around the central bond occurs $(D_{2h} \rightarrow D_2)$ does the ${}^{2}A_{(u)} \leftarrow {}^{2}B_{1(u)}$ transition become electric dipole allowed, and polarized along the z-axis, hence associated with a weak transition moment.

the train of vibrational progressions following it, being perhaps responsible for the somewhat odd spacings observed (1660 and 1790 cm⁻¹). Concerning the second band at 398 nm⁷) we are confident in assigning it to ${}^{2}B_{3g}(\pi_{4}) \leftarrow {}^{2}B_{1u}(\pi_{1})$ even though a large number of strongly mixed states are predicted by PPP-CI to lie in the spectral region concerned. However, from the same calculations none of these states is accessible *via* a transition with a comparable oscillator strength to the one above.

EEL. spectra. – *Triplet energy of* **1**. Having identified the Homo \rightarrow Lumo transition in **1**⁺ (corresponding to its lowest excited doublet energy D₁) and given the same transition in **1** [7] (corresponding to S₁), we are able to estimate the vertical triplet energy T₁ of **1** via the 'SDT-equation' [3] [20]:

$$D_1 = (S_1 \cdot T_1)^{1/2}$$
(2)

Equation 2 should apply in the present case (alternant hydrocarbon, 'paired' orbitals involved) provided that the excited states in question are all reasonably well-described by the Homo \rightarrow Lumo excited configuration. Our PPP-CI-calculations indicate that this is the case (*Table 2*). Using the experimental values $\lambda_{max}(1) = 319$ nm (gas-phase value [7]) and $\lambda_{max}(1^+) = 618$ nm, we arrive at:

$$E_{\rm T}(1) = \frac{E_{\rm D}(1)^2}{E_{\rm S}(1)} = \frac{(2.02)^2}{3.89} = 1.05 \text{ eV}$$
 (3)

Species	State	Energy above ground state	% HOMO→LUMO configuration 98.5	
1	$S_1(^{1}B_{2y})$	3.98 eV (319 nm)		
	$T_1({}^{3}B_{2u})^a)$	I.14 eV (1090 nm)	94.1	
1+	$D_1(^2B_{3g})$	1.42 eV (873 nm)	76.6 ^b)	

Table 2. PPP-CI-calculations for the first excited states of 1 and 1⁺

^{a)} PPP triplet parameters. ^{b)} Most of the remaining 23.4% are higher excited C-type configurations (doubly occ. to virtual orbital promotion) which make up 40 of the 50 configurations in the present Cl-treatment. A calculation without these gives a 90% pure Homo \rightarrow Lumo state.

To test this prediction we subjected a frozen solution of 1 in isopropanol to emission spectroscopy. While the reported fluorescence of 1 [8] was clearly visible, we could detect no delayed emission (phosphorescence).

Therefore we applied the technique of EEL. spectroscopy as described recently by Allan [9] to detect T_1 of $1({}^{3}B_{2u})$ in the gas-phase. Figure 4 shows the EEL. spectrum of 1 at different residual e⁻-energies.

As outlined in [9], the EEL. spectrum at high residual e⁻-energy should be nearly identical to the EA. spectrum of 1, which is indeed the case (S_1 =3.89 eV, *Fig. 4;* S_1 =319 nm \triangleq 3.89 eV [7]). At low residual energies (<4 eV) a new spectral feature

⁷) The small band at ≈ 450 nm does *not* belong to 1^+ because it behaves differently from the other bands upon bleaching by visible radiation or bulk warming.

Fig. 4. *EEL. spectra of* 1 (Figures to the right indicate residual electron energy at which the spectrum was recorded. The 2950 cm⁻¹ progression (first peak attenuated by a factor of 20) corresponds to excilation of a vibration of ground state 1)

peaking at 2 eV begins to emerge, along with vibrationally highly excited states of the electronic ground state of 1. The expanded inset at the top of Figure 4 shows that the vertical transition occurs at 2.0 ± 0.1 eV. We conclude that this band corresponds to the lowest triplet state T_1 of 1. This is supported by the PPP-procedure (Table 2) which yields $T_1 = 1.14$ eV but has been found to consistently underestimate vertical triplet energies of polyenes by 0.7-1.3 eV [24]. We have at present no explanation for the failure of expression (2) which has been previously applied successfully [3] [20].

This work is part of project Nr. 2.422-0.82 of the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung. We thank Prof. T. Gäumann and Dr. A. Menger at ETH-Lausanne for help in the γ -irradiation work, and especially Dr. M. Allan (Fribourg) for recording the EEL. spectra.

REFERENCES

- [1] T. Bally & E. Haselbach, Helv. Chim. Acta 58, 321 (1975); T. Bally, U. Buser & E. Haselbach, ibid. 61, 38 (1978).
- [2] T. Bally, E. Haselbach, Z. Lanyiova & P. Bärtschi, Helv. Chim. Acta 61, 2488 (1978).
- [3] P. Forster, R. Gschwind, E. Haselbach, U. Klemm & J. Wirz, Nouv. J. Chim. 4, 365 (1980).
- [4] T. Bally, H. Baumgärtel, U. Büchler, E. Haselbach, W. Lohr, J.P. Maier & J. Vogt, Helv. Chim. Acta 61, 741 (1978).
- [5] J. Janssen & W. Lüttke, Ber. Deutsch. Chem. Ges. 115, 1235 (1982).
- [6] a) M. Traetteberg, P. Bakken, A. Almenningen, W. Lüttke & J. Janssen, J. Mol. Struct. 81, 87 (1982);
 b) M. Noltemeyer, J. Janssen & W. Lüttke, J. Mol. Struct. 81, 105 (1982).
- [7] J. Janssen & W. Lüttke, J. Mol. Struct. 81, 207 (1982).
- [8] J. Janssen & W. Lüttke, J. Mol. Struct. 81, 73 (1982).
- [9] M. Allan, Helv. Chim. Acta 65, 2008 (1982).
- [10] R. Dressler, L. Neuhaus & M. Allan, J. Electron Spectrosc. Relat. Phenom., 1983 in print.
- [11] T. Shida & S. Iwata, J. Am. Chem. Soc. 95, 3473 (1973). and references cited therein.
- [12] A. Grimison & G.A. Simpson, J. Phys. Chem. 72, 1776 (1968).
- [13] P. Hochman, R. Zahradnik & V. Kvasnička, Collect. Czech. Chem. Commun. 33, 3478 (1968).
- [14] J. Panciř & R. Zahradnik, J. Phys. Chem. 77, 107 (1973).
- [15] H.C. Louguet-Higgins & J.A. Pople, Proc. Phys. Soc. 68A, 51 (1953).
- [16] R. Zahradnik & P. Čárski, J. Phys. Chem. 74, 1235 (1970).
- [17] F. Brogli & E. Heilbronner, Theor. Chim. Acta 26, 289 (1972).
- [18] E. Heilbronner & A. Schmelzer, Nouv. J. Chim. 4, 23 (1980).
- [19] J.P. Maier & D. W. Turner, Faraday Disc. Chem. Soc. 54, 149 (1972).
- [20] E. Haselbach, U. Klemm, R. Gschwind, T. Bally, L. Chassot & S. Nitsche, Helv. Chim. Acta 65, 2464 (1982).
- [21] E. Haselbach, T. Bally, R. Gschwind, U. Klemm & Z. Lanyiova, Chimia 33, 405 (1979).
- [22] E. Haselbach, U. Klemm, U. Buser, R. Gschwind, M. Jungen, E. Kloster-Jensen, J. P. Maier, O. Marthaler, H. Christen & P. Baertschi, Helv. Chim. Acta 64, 823 (1981).
- [23] E. Heilbronner & H. Bock, «Das HMO-Modell und seine Anwendung», Vol. 1, p. 323 ff., Weinheim 1968.
- [24] T. Bally, unpublished results.